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ABSTRACT

The n-width dn, approximation numbers 6 and entropy Cn of the
n

Hardy spaces H. in Lq(-1,) are estimated. More precisely, denote by

Fr the space of continuous functions which satisfy a Lipschitz condition of

order r at :0. It is shown that

expl-2an1/2 8 (Hp n Fr,L"),dn (Hp Fr,LW) << exp(-c 1/ 2 1

expl-20n 1/ 2  8 << n(H pL q),dn (H pL << expC-On1/2), for p > q

exp(-2Yn 1/ 3 ) << en(Hp Fr,L.) << exp(-Tn1 / 3

where "< indicates that the inequalities hold except for polynomial

factors in n. The constants r,P,y depend on p,q and r. For p - 0,

the factor 2 in the lower bound of the first inequality can be omitted.
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SIGNIFICANCE AND EXPLAMATION

For analytic functions many of the standard approximation processes

converge at an exponential rate. Using more sophisticated methods, it is

still possible to obtain exponential convergence even in the presence of

singularities at the boundary. F. Stenger and A. A. Goncar, eeg., constructed

rank n approximation methods P such that

If - Pnfl 4 C exp-rn1/
2)

for f an analytic function, bounded in the unit disc, which satisfies a

Lipschitz condition of order r at *1.

In this report it is shown that estimates of this type are optimal in the

sense of n-width, i.e. the above rate of convergence is best possible for

approximation by rank n methods.

The responsibility for the wording and views expressed in this descriptive
suvisary lies with MRC, and not with the authors of this report.
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N-WIDTH AND NPMoPY OF Sp-CZASSES IN Lq(-1, 0)

E. G. Burohard and K. Hdllig

1. ZNTRODUCTZOU.

> 10r analytic functions many of the standard approximation processes converge at an

exponential rate. Using more sophisticated methods, it is still possible to obtain

. exponential convergence, even in the presence of singularities at the endpoints of an
$; 4

interval of approximation.

In this paper we obtain precise upper and lover bounds for optimal convergnce rates

of ap&prmitio processes for the natural Imbeddings of Hardy spaces into Lh( -11) in

the sense of n-width, approximation nmbers (linear n-width) and also entropy. This makes

It possible to assess the optimality of bounds previously obtained for special

approximation operators.

As a model exle, consider the class H of analytic functions f bounded in the

unit disc. To obtain convergence in Lo(-1,1) of approximation methods, some mild

additional assutions must be imposed about the behaviour of f at 11. For this, let

1 r demote the class of functions in L (-1,1) which satisfy a Lipschitz condition of

order r > 0 at *1 (c.f. (2.4)).

Zn (61 A. Goncar has constructed piecewise polynomial approximation operators Pn of

rank n such that

(1.1) If - V nfl( << exp(-ul/ 2 (Ifl o + If Ir

where a - log(1 + r)r 1 / 2 . Here, OW indicates that the inequality holds except for a

polynomial factor in n. R. Do Vore and K. Scherer (4) showed that exp(- an1 / 2 ) is a

lower bound for approximation by piecewise polynomial operators. In (9, 13-161 r. Stenger

developed a theory for approximating analytic functions using Whittaker's cardinal

series. In particular he obtained (1.1) with an improved value of the constant,

Sponsored by the United States Army under Contract No. DAAG29-0-C-0041. This material
is based upon work supported by the National Science Foundation under Grant No.
NCB-7927062, Nod. I
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/2* or the approximation of functions f in ,n A r we obtain the sharp2

lower bound

(1.2) If - PfI exp(- I r) )Ill+ *IFI~

valid for an arbitrary rank n operator Pn (c.f. Theorem 1). 2 his establishes that

approximation by Uhittaker's cardinal eeries is optimal and exp(- -1 (in) 1/)is the

precise asymptotic order of the n-width of v.f n rrIn L(-1,1) up to a polynomial

factor in n. Wie obtain results analagous to (1-*1) and (1.2) for the n-width and

approximation numbersi of R. nl Y in L.(-I,I) (c.f. Theorem 2) and of up in

L (-1#1), p), q, (c.f. 'Theores 3).

For entropy, however, the asymptotic behavior in different. For our model example we

obtain (o.t. Theorem, 4)

exp(-2vfn 1 ')( Ue 1/3 /3)

where Y - log 2 r 1/3. Thus, our results show that a-width tends to xero more rapidly

than entropy. These etimates are in remarkable contrast to the results for Uobolev spaces

where a n4 d 1) M Te slower decay of entropy seems to be typical for classes of

analytic functions. 3g9. the best known exnle appears to be the following. set

h (W 0CS IwI(<10. Theawe have for P <1

6 (3O,L(A)) )< exp(-Ilog pin)

a n(NO400 ) > exp(-(lag 2 I10, P1 n 1/ 2

After stating our main results in section 2 we prove in section 3 auxiliary results

regarding n-width and entropy. in section 4 we introduce equivalent approximation problems

on the real line and obtain basic approximation properties of weighted cardinal series.

The proofs of Theorems 1-4 are given in section 5.

-2-



2. MUMN UUIRU

Let T a Z + Y be a bounded linear operator between ]anach spaces X and Y. The

S- &dh e the soroxiat-ion numbers (linear n-ith) an the~9 enrp of T

we defined by

(2.1) d,1(t - ma p di .t (TV)
VCI NxI41

din V4n

(2.2) ai't f I- p I x + Y
PL(Z,Y)
rank P4h

2 n
(2.3) (T) .inf. { 3yl,.. a a such that lX) .C U (y + IYB )}

where SX) denotes the closed unit ball of the .space X. Xf 2 a X + T Is a

continuous ebdding we write am(xV) in place of a(Y). Nere and In the seq u l a

stands for either ame of the nmbers de, %6 or a 0

Let Hp. 1 4 p -, denote the Rardy space (51, i.e. is the class of analytic

functions in the unit disac A for which

M I sup ( J Ifo(a")tl Pde )l p. I - p -C ,
p 0460 0

-iflo - sV If(a)I

is finite. Given a confozural homeamorphism h of A onto a simply connected region

0 C one can define [6)

S()- (f s f + C f * hen ).

Different confomal mape result Ln equivalent nornm.

We denote by Pr the class of functions in L(-1) which satisfy a Lipschitz

condition of order r 3 0 at ti. Let LrJ (ri) denote the least (largest) integer not

less (greater) than r. Ir is the direct su of P2LrJ-1 ' the space of polynomials of

degree at most 2LrJ - 1, and the space rL*(-t,1) of functions with zero* of order r

-3-
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at *1 9(w) - - w2 . Lot pr be the projection of p" onto p 2LrJ-1 defined by the

conditions
i ~ ~~(f _ prf)i "r • 6 -11

Then the norm on r on be def ned by

(2.4) If Ir - IPrflL.(-,1) I'r(f prf)lL(1,1)

we study aprouimation of function isn up n r r . To state our results we use the

following notioes of asYMPiotic equivalese. Lot au, bn , n e U, be two sequences of

positive rsv o. we write a <L b n  if there exitst a positive constant C such that

a 4 C b. end a. Itb3  if there exists a positive constant j such that a. , n b -

s The bj ,), a" -, -we defined-similarly.

', in0o 1. r)e0

4n~m n r~r.,(l~l), n(Nn 7 LJZ.-1,1) I '>< ezp(- I, ) .

This result has already be mentioemd in the introduction (c.f. (1.1e), (1.2)). The upper

estimate is due to I. S Inger 1131 and our lower bound shows the optinality of the order

MWp(- 1 (rn) 1 / 2 )•2

THuOm 2. For r ) 0 and 1 4p 4 - we have

exp(-2an 1/2 r (Hp n Pr,La(-1)), dn(%. r LO(-1,M << *xp(-R 1 /2)
phere ap- Tr

2(r + l/p)
1/ 2

It is interesting to compare these rates with the estimates of F. Stenger [151, who

considered the classes v* #H , with #(w) - 1 - w2 ' and obtained
p

*xp(-(/Ii n- 5)1/2) n(H ',L.(-,1))
np

sxp(.( W 1/ ,)1l/2) n ,,
2(p,)

-4- 14
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aer 4 is defined analoguous to 4a but restricting the class of rank n

a lomations P to methods based on point evaluation, i.e.

a
Pf I V(x )ea

ji

as we shall see in @ection 5, H* is similar to the (smaller) class
p

n nr, r - I - 1/p I/p' . we obtain the bounds (valid alsof or 8 6n

(2.5) e 1_ n12 << L (-1<1)) exp(- n/2)

Zn view of Theorem I we conjecture that the factor 2 in the lower bound of Theoren 2 can be

omitted and exp(-an 1/ 2 ) is the precise asymptotic rate of the n-vidth.

TUON 3. For 1 4 q < p 4 we have

ezP(-20as1/2  4n n( -1 %A q d n (EpVq( M << exit(-O J 1/ 2 )

whr < ., -1 _) 1)1/

l maW. The proofs of Theorems 1-3 will show that the results are true for any s-number in

the sense of Pieta ch [ll.

As mentioned in the introduction, Vitushkin's (191 estimates for entropy of classes of

analytic functions show exponential decay of (HLM(pA)) as qxp(-cn1/ 2 ) for

0 < p C I . Notice that in this case the functions approximated are analytic in a

neighborhood of the domain pA of approximation. In this paper we obtain estimates for

entropy of Imbeddings of analytic functions with singularities on the boundary {-1,1 1 of

the Interval of approximation, the rate being exp(-cn /3). We attribute the curious

exponent 1/3 to the fact that singularities are allowed here. A typical result Is as

follows.

" " * , i , ,', ;,r - - -' a;,.;,.rs a';;b- .-.... ti . .5 2',.,' '- "... .'. "- "". .' " ." -". """-a



'TIO= 4. For r > 0 nd I (p e ___e
ezp(-2yn1/3 <4 e (3 n1 (-11) 1/3)

y TYri~ 2)1/3

tiero ¥ .2(r + l/p))

ON_
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3. MUL PWIUtmZ3 or a, Am

A. Pietacb has developed In III] a gesral theOry of s-umbers" which includes

n-width1 and ap ti numbers as special casse. No list below some basic properties

of b and On which bold for entropy as well. Let ass demote either Oe Of the SUwbOVs

%4 S or C and let 1 s X + ' be a bounded linear operator, them we h v e

Me a as fomamonotoneareo sn aus . i.e.

(3.1) It - a(1) b a,(?) ) ...

IL , Aamt the act rLstiaa ', T Z# T' X+ Z' 1 1 we have

(3.2) a(T) C Iian(T')IN.

Xkimkm an are additive. i.e.

(3.) a fM0 +2 +1) ,a %0t) + a a

Vroperties (3.1)-(3.3) awe direct cosemuenmoes of the definition. (c.f. 111).

lbs followivg result Is useful for obtaining lower bounds for n-width and

elpramatiab mwbers.

ree 1 (6). V Jinja n+ 41nesionalube oof a e tIs V I be t

Ma",MAioa ,,leL om. Ibem- e have

%U(i) On SU- 1

we doall need sm estimates for an in sequence spaces. By ?. we denote

IF, 112 with supremum nm. Zn addition, we define the weighted slame I., by

(3.4) V

iUSS. ,3= m)n jgLM

to9 N 2a - 1,2n

OP.,,.) 61.0 - ,sp-(-s) .

-7-



Proof. The first part of the Lem is a consequence of Loma 1.

Let PW be the projection of 1,, onto the span of the first N basis vectors

(a V) =0 I V 4 /2. Then

i- p , A tl - exp(-L9/2j)

is an upper bound for %N(i), i I M + A. being the natural LnJection.

For the lower estimate consider the factorization of the identity

* ~~~~344 Lg C -. 31 3+

where I is the canonical injection. Using (3.2) and Lema 1 this yields

M+1 N1 ) + 4 Ill , p'So) l 4 exp(Prl( + 1)/21)d( t

E ~l 3. For i ) 0 we have

-2exp(-(lo2 Pm)
1 /2) ( ) f.pexp(-(102 P.)1/2)

Proof. For C ) 0 the unit ball a of ILM-P contains the finite subset

A() - (a 6. i ava a, I I 4 ep(-e I vi)}) A

For the upper bound note that A(29) is an t,, 1 -net for 3. It suffices therefore

to show card A(2 9)( 2 n when C* 6 (log2 )1_2- P. We estimate

card A(29) - 1 (2rexp(-IvI p+ 6)/41 + 1) C I exp(-I P+ 6)

Cexp(-P( 1)-+ 8(2 -A+ )I exp(-+ 26) 2n

as claimed.

For the lower bound fix n-
1 e, 6 (og2 1 f)1/2 + 2p. Then

2

card A1(2) - I (2rexp(-IVIp + 8)1 + 1) > I enp(-IVIp + 6)
V= I Al< (/P

. : II Oxl)-p(" + I) -1+ 6(C2 - 1)) m elC--26))2n
l

--..



Given any I. c-net N for B with cardinality 2n , since card A(2Z) > 2n , at least

one of the £ -balls of radius C with center in N must contain two distinct points of

A(2;), and this implies 4 . C. This establishes the lower bound.

%...r . . . .

-4
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4. APPROXZNZ0N 1P.OC3hUU8 ON TU L1

For the proofs of our theorems in 15 it will be convenient to consider equivalent

approximation problems on the line. The conformal mapping

a - log I +

transforms the unit disk A one-to-one onto the parallel strip a - (z e e , I'.- z1 < h

and at the msa time mNaps the interval (-1,1) onto I. This substitution induces

isometris from a. onto (a) and from L.(-1,) onto the weighted space *' q (,,),

where
*1•1 d A - I + cosh ,

"6 /qq
The norm on * L (a) is given by

< q
% 

l ql q(R) - lI/q--- -L (R)

We also need other weighted function spaces. Lot

2 - - , 0< dx
d TA

L.e., a ad iff Imal < d. Then, for real ), f 6 *u,1.) iff Af 0 £ _(A4) and

IfN 47- x (d

Notice that # maps 0 onto \{x 63 i x ( 0) and so is holomorphic on AW.

wo note som simple propeortio of #(z). Xf • - x + iy e ".. then

(4.1) c * I xl I(z)l - cosh x + cos y f 2e Ix l
y

wheore c - for lYl 4-1 and c - (1 + cos y)/2 for !< lY C w. if w • A, then
y 2 2 y *2

•log 1 V nel 2  and

(4.2) 1 - IV - 2 coo y/l#(z)l •

We nov establish equivalent approximation problems on the line. To do this, we first

replace rr by the simpler space IrL(-1,1).

= -10-

, -w* .- *- .............. . , ... .. ,.........,... - .. . .... .. .. ,



.4

LUSI4. , r0, k-2Lrj.I 1Cp,q4.O. Then for a n - 6nd n

a +k'm, r ii F,L q(-1,1)) %(% n q (-1,1).

4 a (.H n r,L (-I,1)) .

np q

an - ah the second ineauality is still valid but the left-hand ineuality is

replaced by
e5n(% n VrL (-1.1)) - 2 "M/  ( c (n n L-,1),Lq(-,1))

Proof, Write the natural injection Ii u Hn r r + Lq(-',I) in the form

i O (" - Pr) + Pr where Pr is the proJection of er  onto Pk-l' of. (2.4). When

an - nd n it follows frc (3.3) and rank Pr - k that

14.3) ,a.,.kl.) ,4 anl(. - pr).

This is the only step In the proof where entropy requires a different treat mt, and we

have

(4.4) man 4 n(li - pr ) + spr) 1 gn1( - pr) + 2

m second inequality coise from the factorization

k -m/kwhere j Is the identify on 970 and a (j 2 *We now proceed with a d . oraa n n

dn. We may factor i-p 1  as

P, I , u nLIII
i- q11 5A

With off ft (i - pr)f, and IT$ - I in view of (2.4) and the inequalities

I" P ' r 'R U + 'P(f lp if *i n + % 'L+(, If R "
p

The left-hand inequalities of the za now follow from (4.3), (4.4) and (3.2). The right-

band Inequality is obvious from (2.4).

The substitution z - log + induces isaomtries H p + Up (0),
L ( +-1 1) + ,'*1,o .- noting that 2.., - 2

q q
consequence we obtain the following equivalence.

%6

. '. ., . :..,; . I, '.. " *4.*.- * -..- ..- . . , * .* .. . .. .. . . - -



LE 5*

%(Hp q %(PU -L() ,q q ()

as one might expect when approximating functions on the line, the precise behavior of

the functions near the boundary of U in not important for the rate of an. In fact, it

turns out that what matters is merely the approximate rate of growth of If(z)j for

f a K(Q). The next lema is what we need for the reduction from NP(0) to

LE.- 6. ror >0 one has

6,,,1 *''o/p if U# 2 -6 ) <. n_ -

Proof. The lower bound follows from an inequality of Hardy and Littlewood [5). For

ge u *H(A)

Ig(v)l 2
1 /P 1 - IWI2l)'/Pl 1

For f a6PO a ~w ~o ) Then If1 (U - V and hence by (4.2)

I f(x)1 c-i1/py I # p I if I.

" ' If(s)I (cc o'1pl( Hl~f (U)

For the upper bound we observe that

39l//4-C 1 4 4'11OHC 11, 9 I

and *07-iP/ "  mf 1 in--) P 1/p
p 0

. in analogy to similar characterization. of Hardy spaces on the upper half-plane

IS1, one can show that Hp(Q) /PH p H p , where f e ip iff f isa nalytic in and

If - sup { f f(x + iy)lPdxl/P < •
p iyl<V/2 --

-12-
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The proof of this non-olementary result makes use of the factorization theorem for the

Bevanlinna class e and the fact that (1 - w 2 )"I  is an outer function.

L 7. Let C > 0. Then ML ( < "  0 uCf x,)(R)iq

This inequality is useful when proving upper bounds, an it implies

an (2, 0 [/q M)) < g'/ a(x, 4 /tiEL.(3)) The lover bounds require a different technique

employing a regularisation mapping -1/1L q (R) into a weighted Lr-space, cf. Lema 9

below.

Next, we describe the approximation processes on the line to be used in the proofs of

our main theoroms in 15. Let P ) 0, t > 0, V e S and define the functions

a) - a (s) - -v/t) sinW(t.- V)

sV~ (u)- W(tz-V)

Notice that s is holomorphic in 1 and sv[/t) - 8 . Let

ant8 = span(s V sv 4 n) and define the interpolatory projections

Pntp CI) + 8ntp,

ntp lvi ( l/tVP

in addition to those finite-rank approximations we also need the series

P- - I f('V/t)s

For p - 0 this is the Whittaker cardinal series (18). As mentioned in the introduction,

the cardinal series was employed by Stenger [13] in obtaining his upper bounds. Lundin and

Stenger (9) and Stenger (151 also used weighted cardinal series similar to ours. The next

la implies that the series P f converges uniformly on R if (f(ivt)) is a

bounded sequence.

now establish bounds on the condition number of the basis (a ). It is perhaps
V

surprising that these crude estimates, where the coefficients grow as powers of n (the

-13-
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*71

parameter t will turn out to be proportional to n 1/2 sufflae for determining the

order of %*

i 4mu 9. Wa la) Vn 
-l &.n1() t ) 1

(4.5) I(a)1 1n1 av I t- $cU )uI
V It VU VtP L,(3) t pt

Proof, For the upper bound we mast estimate the Lebesque function Lx) " I-t P ()I.

By (4.1)

ILI L"(2) C up1

The value of the last sun evidently depends only an the residue of xt mod 1,* hence let

0 4 xt 4 1. Then Ix - V/ti ), (lVi- 1)/t ad for t ), 1

ILIL.R / I 7 t c e ~ teP/t/p 4

A similar estimate can also be proved for L,00 replaced by Lq(a).

LMM 9. Fora positive integer a, P0 a 0 (q i

(4.6) (p + 0) 1/4 n- /q INa) IV14I 2n+1 4 1 *VVp'L (0)

4 3 / (aV) I nI2+

Proof. The right-hand inequality follows from (4.1). To show the lower bound, for each

lvi 4 n extend to L q(a) the linear functional on %t given by I a t +a..

convenient extension is LVI* where

-14-
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V VO 26 /ti'
La, Io bwij  I s (x)dx, uI•L(3) ,

and u-(b ) isthe inverse ofA - (IC),

- /+ ortp lx)d, e>) o# lull, l n.

a. srl/t) - ai we have the bound

I - Is W as 2/tlx

r I su K8pxl l~t )

4 whet. IK is •amstant. We choose • -p tP a a)' nd'b1i

dri

.4 M I t z) 4m~

A-IA- N1 is &2n+ (pN6(P+ t) •

Yterefcoe 1

"hIS ve for +

ILl c I/q' 671/q.' (p + t) I/q n/q

irinally, in this section, we state a formula for the error of aPProximation

f - £tl whi h follows from the calculus of residues and was extensively used by 7.

Itenger (13).

.6 _

.4 zLMoMM 10 f ene, tad), 0 < 4 a 't M xe U. ,  then

(4.7) (f . f) W sinwtx (Px - )t(z)

to 2pi (C- x)sin(s)dz

-15-
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Proof. Denote by Rn the rectangle

{x + Lye 045: xi < n +t 1/1

if we replaie P btyPb Pntp and 30d by 3n, then (4.7) follow from the residue

theorem when x a % . we now let c + 0 and n +* and apply the dominated convergence

theorm. mere we are using the existence of nontangeAtial limits in L.(3h) for

f 6 N. - nH(A), as the lines Ire zI - const, z e QdF transform conformally to

nontangential curves in A under the substitution z - log - We also make use of

(4.1) and of

(4.6) 1 yoah 2 - 2 coo 211/2 (elyl

LUUM 11. Under the hypotheses of Lina 10. whe d - and t I 1
2-

(40) I - ox(- tf in 0

roof. Prom (4.7) and (4.8)

t"2 WaS 00tt 2 N

For reference below we note

(4.10) Aup !siw(ts-v) I exp(dt)

a consequence of the naximum modulus theorem and (4.8).

We note that approximation in L(R) can be replaced by approximation in C(a) , the

subepace of continuous functions in L(R). more precisely, for a compact inear operator

T I X + C(U we have

(3.5) an(Y) - an(T)

where j C LO  is the injeaction. It is clear from (3.2) that *n(JT) an(T) as

-160.
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ljl _ I. To prove the rever.e inequality note that the campactness of T implies that

there exists a modulus of continuity v(6,t) such that

w(6,t) + 01 a I

v(St) 4 v(S't), t 4 t'

and for a11 f T(3(x))

S.UP If(s' ) - f(S) I (,t)

1ss.' I 6

lor ) 0 we choose a function h o 0 such that v(h(t),t) < 9 and define a smoothing

operator ares La *C by

I t+h(ItI)
(a f)(t) -ht - JIti f(s)ds.

Then OR 1-I and a%(1T) , an(RC.t) - n(RcT) P an(T) - IT - RCTI by (3.1), (3.2) and

(3.3). From the definition of h ye se that IT - RCTI 4 e which, since c is

arbitrary, finishes the proof.

1
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- a Yr - * C(R), Y- To .

Proof of Theorem 1. By Lenas 4 and 5 it suffices to estimate d (i), 5 (i) with

L XnT~ Y n ie f h ovou nequalty, do 4 ws hal ound4 I romn n n
above and n  from belo . To prove te upr e tate we wrte ( -ptu ) + pr and

by (3.1), (3.3) w ive
6 n( M 49IL- Ptr I + 6 a(P tr)

By Lmma 11 we have

I* ematmae he seond torn- w fm actor Ptr

-~ (5.2) .r T-r £mr '. Y

where (if) - -f(v/t) and Ja-!a vs,. Clearly III- I and Lnoeby ,Imm

5Il < t we obtain using (3.2) and Lma 2

Cmbinng the estimate (5.1) with (5.2) and choosing t - (rn)1 i2  the upper bound.

To prove the lower estimate we consider the following factorization of the identity on

where In and J, are defined analogous to I and J. Using the estimates

INVIs L exp(j -t)

orIs3 I exp(faI I1

1/2for the norms of the basis functions a, we obtain, choosing t - (2zm) * m Ln/2J
VI

%'f - p . ..

W&rth



lie; Ue a )ap m+ eiuiij- t)) :L a evPL! (r)j

lbs lower bound follows now f rom (3.2) end Loas. 1.

We nov formulate a general result which allow a unified treatment of the proofs of

Theorems 2-4 and is of independent interest.

!UORS. let an~ denote either oneof thewmbers da, In or a. n or lOr 900

an t 0 we..have

.42

(5.4)

a(L A =P( __ t)

Aa conseauence we obtain

.~cw(r+ :, 2)1/2) << d (X nl T- ,), %(x n T Is.)

45.5)

22

ProTo prove the upper estimate in (54)wewrt the embedding i a X~ n y in



I
%ML 19 IL - PtOII + %(lPt, a)

and obtain for the second tern (cof. (5.2))

a n ( P t o ) 4 t a n " t -t  X ) •

2herefore we have to show

2

, , , ., - . . _- -4t f < <, -x ( t )
iP 2

2o estimate sup INKx) -P(x) I we Not A - -I n osdrtocss

(L) Jul ( A. Zama 10 and the estimates (4.1), (4.8) imply that

,f(x) - Pt(aW < .. p(- - t) I .xp(" - " al + 1 "da if IX

2

* , .xp(- Zt +)X) f .

(ii) IxI % A. BLc If(x)I .. eXP(-PlX) Ift LO it follows that

IPtcX)l 1 ep(-plWtl - fix- tl)IfI T it exp(-91xl) I l •
v -P -p

This implies that for lxl % A

If (x ) - t f Elx ) l e.x p (- p ) I f l y -
-9

Combining the estimates (i) and (ii) ompletes the proof by our choice of A.

2 prove the lower bound in (S.4) we consider for , > 0 and A - r . Z t2

the following factoriaation of t embedAding - , /t+

i A
P/t+€ C "X n y_ p 1 + .

where (U f)v - f((V + b(v))/t) and JO a- I' •V b(v),t,a. Were b(v) is defined as

b(v) - v + A sgn V and a is chosen larger than A and p. going the inequalities

(4.1), (4.10) we obtain by a simple calculation, keeping in mind the choice of a,

-20-
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n,,blv)' <,0oxp(jW t - M/t)

Is blV) NY I exp(P(A + IVI/t)
-p

Therefore

n Z -lfY 1 ,Vb(V)nXiwP

ep(.-t - )aMt) I IaI + ,xp(PR/t) mplpIvI/tla I

2
£COW€ t - )a )+e*p(ot)) I ep(-lVI) gal,

and by our choice of A we get

-J 1 < !! t

sino 11 1 - I this imles
A

an(e) 6" a"  + t)a a)

Taking into account the asymptotic behaviour of an(j) - a n(i -P/t6*) the lower

estimate follows by the appropriate choice of Co

The inequalities (5.5) and (5.6) follow from (5.4) by substituting the bounds for

an(,, .1) obtained In Lems 2 and 3 and choosing t appropriately. Nore precisely

for as dn we choose tu (IT(X+ P)n)'/2  and for - let
n n22 an -n t

. (4 g2 (A + 0) 2V/3.

Using Theorem 5 we can now easily give the proofs of Theorem 2-4.

Proof of Theorem 2. In view of Lemmas 4 and S we have to estimate the n-width and

,approsxmation numbers of i , Hp(g) n Y-r * .

For the upper estimate consider for C 3 0 the following factorLzation of i

" ..' " ' " J ",,J,2. y- T- , -'1
R (a)n Y -x nl 14 xp -r /p,u/2-9 -r V~P -Ar

-21-
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whre w/2 - and T is defined by
x/2

,. (Yg)(s) - g(As).

since by (4.1)

i. (u)I ° #Pl As)I for 3,4 A e d < w

we have that

17- IT X po + X AP d/A I <. 1, d~d/IL < v
' p,d l~/

IT 5 Y-p - -I

Using (3.2)o Liam 6 and (5.5) we obtain from the above factorization

An11 1) 4 IIIT1n (j 2 )ITI I << S'l/pexp(-f(O)n'1 / 2

where

f(€) 2 1/, W/
' ::,2 "l + Ar 1/

C . u1/2

since f i a smooth function of € we get by setting -

8 (i) << exp(-f(O)n 1 /2 - f'()), [O,n71 / 2 ,n

This proven the upper bound in view of f(O) - f (r + , 1 / 2

To prove the lower bound we consider for 9 > 0 the embedding

Jl I Xl/p-t n Y-r .I Y

which may be factored as

xI/p. € n-r H .p() n Y-r -

By Lema 6 we have 1j 2 1 < c-l/P. Applying (3.2) and substituting the estimate (5.5) for

dn (Ji) we get

"!exp(.v(1/p r€2 + r~)1/2n /2) <%:1 ,,.1PnL

As in the proof of the upper bound we write this inequality in the form

S/P exp(ag(c)n 1/ ) <s dent M

Writing g(O)- + ¢gO() and feintng is n 1/ 2  finishes the proof.

-22-
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The proof of Theorem 4 is completely analogous and therefore emitted. we simply use

the estimate (5.6) for C ninstead of (5.5).

Proof of Theorem 3. Recall that by Leinaa 4 and 5 we may estimate d Mi, 6 (i), where
n n

W/2 -To prove the upper etimate we consider for C > 0, X w/-n

p - /q - O (/q + l/p) the following factorization of L

i [p(Q /pw2c +XVP l /q-p ' (I/q-p)/a q(R

where T is defined by CTg)(s) - g(Az). A we already pointed out in the proof of

Theorem2, F1, 1-1 : It By our choice of AV9 and since p >q we have

A/p < l/q - p and (l/q - W 9) I 1/q. Therefore the embeddings J01 2 43~, gr well

defined. By Lemas 6, 7 lji ' J31 ~ .using (3.2) we obtain

6n(i) 1,cl/Pn(J2)

*Since a n(X Gy)-a (x 0,IY) a (xA n y ) this and (5.S) imply

nG n1 1- -~/a n Y 0 q-? r) 4'px(-() /

where h(s) -- (I/p - 1/q + p) with A1- I(c), p p(s) as defined above. since2

IC 0) , () wmago C l/2and complete the proof as in the previous

cases.

d The lower estimate, however, cannot be obtained by this technique since there is rto

embedding L q (3) + YV. But we may work with Lq directly and proceed similarly as in the

proof of Theorem 1.* By Lemma 6 and isometrics we obtain

Let P I /q - 1/p + C. Then P )Cand we can factor the identity
2n+1 1 2 1I 2+

Iii . Lq (R 4 2+I Here, ICa)

the Hahn-Banaoh Theorem there exist linear functional. I. On L (3), I VI -C n, such that

V q
-23-



r~~~( SO)a 1

(actually, an explicit construction of LV is provided in the proof of the lea).* Let

11be defined by 11 f - (Lvf)lvlin* Then

1/q 1/qIZI1('C(P +t) n

TO estimate 11 2 1 s beave from (4.1), (4.9)

' PIXI-P13x-V/tI W2)-.p~~it t

Therefore

2 ~ ' 2  J

From Zao I and (3.2) there follows nov

I - d 2(Z) 4 11 1 d 2(J) 11 23

d8 U) (P + t) -I/q n-1-1/q C 1/ exp(-Pn/(2t) - t).

-1/2
Sths proo is ompleted by the choice of t - JWTand then e - a

Remark. Combining the ideas of the preceding proofs, ye obtain the estimates (2.5).

Indeed we have, of. Looms 5,

6 n(3p*,LM(-1,1)) 26 (* '3 (W,L 3)

Let P - 1 - 1/p - I/ps, From the obvious injection I -c- x nyP , by Lasms. 6, (3.5)o

(5.5) and using TA as defined above

;E 6~lIP n(X-fy) :E C~'/ 1(x n T- T.) << exp(. (on)1/2)

S- 1/2' as in the proof of Theorem l.

-24-
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For the lover bound

(n~" lH ) ) 5 /p 6 n(Y. .O Y) exp(-f(s) 1 / 2 )

were we procede as in the proof of Theorem 3, but using Lemma 8 instead of 7S 9.

The following slight extension of our results in now easily obtained. Zt concerns the

question sbout the dependence of an(Np(0) VL (-1,1)) on the domain D. A domain much

smaller than A might be useful to consider when it is a matter of approximating functions

with singularities very near the interval of approximation (-1,o) or, conversely, one

night be Interested in functions known to have singularities far from (-1,1) s Suitable

domains generalising A are given by

AdW{VS1 S 6C i arg ±-IdI O,0 d <TI, A -A, 2

Theme were considered by Stenger [13-16] who obtained upper bounds. The substitution
1+v

z -log - w map Ad conformally and 1-to-1 onto Gd.  Using the isometry

(Tg) ~) -2d
(2g)(s)- g(As), A - i-, we find we can reduce the problem of bounding

an(HpCAd) A Vr, L (-III))

j ~ to that of bounding

an(Hp(Q) A -,#VLq()

which we have already solved. we state only two of the resulting estimates for

Illustrations

dnl8.(A.) n Fr, LJ-1,1)) >< GXp(- 1 (An/2n 2

where r > 0, A - , nd for p ) q/ I

7 xp(-2ln 1 / 2 )  a1 n(()L (-I,1 )) << exp(-ln 1/ 2 )

when 1 ( 1- -1/ and similarly in the remaining cases.

-25-
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20. ABSTRACT (cont.)

1/2 rWLd f * - 1 / 2)
.xp-2m ( y ( 6,p A, I 1 L*) <4 *--

n4 p

exp(-20a1 / 2 <) (C 6p(H .p ),(,e) e(v -mp/ 2 ), for p > q

exp(-2yn1 3 € s n F La) << OXP(-I/3

vhere O indicates that the inequalities hold except for polynm al

factors in n. The constants *,,,y depend on ppq and re For p-

the factor 2 in the lover bound of the first inequality can be mitted.
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